Opcode/Instruction | Op /En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
EVEX.128.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, xmm2 |
A | V/V |
AVX512VL AVX512F |
Converts 2 packed quad-word integers from xmm2 into 2 packed double-word integers in xmm1/m128 with truncation subject to writemask k1. |
EVEX.128.F3.0F38.W0 25 /r VPMOVSQD xmm1/m64 {k1}{z}, xmm2 |
A | V/V |
AVX512VL AVX512F |
Converts 2 packed signed quad-word integers from xmm2 into 2 packed signed double-word integers in xmm1/m64 using signed saturation subject to writemask k1. |
EVEX.128.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m64 {k1}{z}, xmm2 |
A | V/V |
AVX512VL AVX512F |
Converts 2 packed unsigned quad-word integers from xmm2 into 2 packed unsigned double-word integers in xmm1/m64 using unsigned saturation subject to writemask k1. |
EVEX.256.F3.0F38.W0 35 /r VPMOVQD xmm1/m128 {k1}{z}, ymm2 |
A | V/V |
AVX512VL AVX512F |
Converts 4 packed quad-word integers from ymm2 into 4 packed double-word integers in xmm1/m128 with truncation subject to writemask k1. |
EVEX.256.F3.0F38.W0 25 /r VPMOVSQD xmm1/m128 {k1}{z}, ymm2 |
A | V/V |
AVX512VL AVX512F |
Converts 4 packed signed quad-word integers from ymm2 into 4 packed signed double-word integers in xmm1/m128 using signed saturation subject to writemask k1. |
EVEX.256.F3.0F38.W0 15 /r VPMOVUSQD xmm1/m128 {k1}{z}, ymm2 |
A | V/V |
AVX512VL AVX512F |
Converts 4 packed unsigned quad-word integers from ymm2 into 4 packed unsigned double-word integers in xmm1/m128 using unsigned saturation subject to writemask k1. |
EVEX.512.F3.0F38.W0 35 /r VPMOVQD ymm1/m256 {k1}{z}, zmm2 |
HVM | V/V | AVX512F | Converts 8 packed quad-word integers from zmm2 into 8 packed double-word integers in ymm1/m256 with truncation subject to writemask k1. |
EVEX.512.F3.0F38.W0 25 /r VPMOVSQD ymm1/m256 {k1}{z}, zmm2 |
HVM | V/V | AVX512F | Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed double-word integers in ymm1/m256 using signed saturation subject to writemask k1. |
EVEX.512.F3.0F38.W0 15 /r VPMOVUSQD ymm1/m256 {k1}{z}, zmm2 |
HVM | V/V | AVX512F | Converts 8 packed unsigned quad-word integers from zmm2 into 8 packed unsigned double-word integers in ymm1/m256 using unsigned saturation subject to writemask k1. |
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
HVM | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed double-words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed doublewords using signed saturation. VPMOVUSQW convert unsigned quad-word values into unsigned double-word values using unsigned saturation.
The source operand is a ZMM/YMM/XMM register. The destination operand is a YMM/XMM/XMM register or a 256/128/64-bit memory location.
Down-converted doubleword elements are written to the destination operand (the first operand) from the least-significant doubleword. Doubleword elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:256/128/64) of the register destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 m (cid:197) j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) TruncateQuadWordToDWord (SRC[m+63:m]) ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] (cid:197) 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] (cid:197) 0;VPMOVQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 m (cid:197) j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) TruncateQuadWordToDWord (SRC[m+63:m]) ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFORVPMOVSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 m (cid:197) j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) SaturateSignedQuadWordToDWord (SRC[m+63:m]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] (cid:197) 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] (cid:197) 0;VPMOVSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 m (cid:197) j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) SaturateSignedQuadWordToDWord (SRC[m+63:m]) ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFORVPMOVUSQD instruction (EVEX encoded version) reg-reg form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 m (cid:197) j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) SaturateUnsignedQuadWordToDWord (SRC[m+63:m]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] (cid:197) 0 FI FI; ENDFOR DEST[MAX_VL-1:VL/2] (cid:197) 0;VPMOVUSQD instruction (EVEX encoded version) memory form
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 m (cid:197) j * 64 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) SaturateUnsignedQuadWordToDWord (SRC[m+63:m]) ELSE *DEST[i+31:i] remains unchanged* ; merging-masking FI; ENDFOR
VPMOVQD __m256i _mm512_cvtepi64_epi32( __m512i a); VPMOVQD __m256i _mm512_mask_cvtepi64_epi32(__m256i s, __mmask8 k, __m512i a); VPMOVQD __m256i _mm512_maskz_cvtepi64_epi32( __mmask8 k, __m512i a); VPMOVQD void _mm512_mask_cvtepi64_storeu_epi32(void * d, __mmask8 k, __m512i a); VPMOVSQD __m256i _mm512_cvtsepi64_epi32( __m512i a); VPMOVSQD __m256i _mm512_mask_cvtsepi64_epi32(__m256i s, __mmask8 k, __m512i a); VPMOVSQD __m256i _mm512_maskz_cvtsepi64_epi32( __mmask8 k, __m512i a); VPMOVSQD void _mm512_mask_cvtsepi64_storeu_epi32(void * d, __mmask8 k, __m512i a); VPMOVUSQD __m256i _mm512_cvtusepi64_epi32( __m512i a); VPMOVUSQD __m256i _mm512_mask_cvtusepi64_epi32(__m256i s, __mmask8 k, __m512i a); VPMOVUSQD __m256i _mm512_maskz_cvtusepi64_epi32( __mmask8 k, __m512i a); VPMOVUSQD void _mm512_mask_cvtusepi64_storeu_epi32(void * d, __mmask8 k, __m512i a); VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a); VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b); VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b); VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b); VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a); VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b); VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b); VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b); VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a); VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b); VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b); VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b); VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a); VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b); VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b); VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b); VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a); VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b); VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b); VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b); VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a); VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b); VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b); VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
None
EVEX-encoded instruction, see Exceptions Type E6. |
If EVEX.vvvv != 1111B. |